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The steady-state motion of a gas bubble inside a non-isothermal, Spherical, liquid- 
filled container is described by taking into account the effects of gravity, the 
thermally induced gradient of the gas-liquid interfacial tension, and the finite size 
of the liquid container. The flow fields inside and outside the bubble located at the 
centre of the container are calculated using a low-Reynolds-number approximation 
of the fluid equations. The temperature fields are determined by using a low- 
Prandtl-number approximation of the heat equations. A general expression is 
obtained for the steady-state migration velocity of the bubble which, under certain 
conditions, reduces to expressions previously derived by a number of investigators. 
Finally, an expression for the vertical temperature gradient that will maintain a 
stationary gas bubble at the centre of the container is formulated. 

1. Introduction 
The motion of a gas bubble, or in general, a fluid sphere, in an isothermal liquid 

bath was first investigated, independently, by Rybczynski (191 1) and Hadamard 
(1911, 1912). More recently, Haberman t Sayre (1950) have studied the effect of the 
container wall on the bubble motion for the particular case where a fluid sphere is 
initially at a position concentric with a spherical-shell container. Levich (1962) has 
compared quite thoroughly the terminal velocity of a gas bubble calculated from the 
Rybczynski-Hadamard formula with that measured from the experiments performed 
by a number of investigators. The discrepancies between the theoretical predictions 
and the experimental observations led Frumkin t Levich (1947) to conclude that to 
correctly determine the drag force on the gas bubble one must take into account the 
change in the gas-liquid interfacial tension caused by the impurities in the liquid 
medium. This view has been studied further by Farley t Schechter (1963), and 
confirmed by Harper, Moore t Pearson (1967). For example, the formula predicting 
the steady-state migration velocity of a gas bubble in the presence of an interfacial- 
tension gradient induced by the surfactants is derived in Levich’s book (1962) and 
in a recent paper by Levan t Newman (1976). 

In addition to the surfactants, a temperature gradient in the liquid can also induce 
an interfacial-tension gradient on the gas bubble surface and hence affect the bubble 
motion. Young, Goldstein t Block (1959), both experimentally and theoretically, 
have demonstrated this point in their work. Their theoretical treatment is valid, 
however, only for an unbounded liquid medium. Meyyappan, Wilcox k Subramanian 
(1981) have derived an expression for the migration velocity of a gas bubble moving 
toward a planar surface, in a non-uniform temperature field and in the absence of 
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gravity. A similar expression for the migration velocity has been obtained for a fluid 
droplet inside a liquid drop by Shankar, Cole & Subramanian (1981). 

The purpose of this work is to study the steady-state motion of a gas bubble inside 
a spherical liquid container under the influence of gravity, a thermally induced 
gradient of the gas-liquid interfacial tension, and the finite size of the liquid container 
(for an equilibrium description of the problem see Mok, Kim & Bernat 1985) - a 
situation frequently encountered in fabricating high-compression inertial confine- 
ment fusion (ICF) targets (see e.g. Kim 1984 and references therein). (Note that a 
contemporary design of a high-compression ICF target calls for a spherical microshell 
containing a uniform layer of liquid fusion fuel on the interior surface.) The gas bubble 
is assumed to be spherical; namely, the energy resulting from the gas-liquid 
interfacial tension dominates the gravitational energy (for the proof the reader is 
referred to Mok e ta l .  1985). Another assumption is that the bubble has already 
attained its terminal velocity when it becomes concentric with the container. The 
flow velocity fields inside and outside the gas bubble when it is at the centre of the 
spherical container are obtained by means of a low-Reynolds-number approximation 
of the relevant fluid equations. The temperature fields are found by evoking a 
low-Prandtl-number approximation for the heat equations. The expressions for the 
vertical temperature gradient on the outer surface of the container that will bring 
about a stationary gas bubble at the centre of the container (namely, a uniform liquid 
layer on the inner surface of the container) are derived by requiring that the bubble 
velocity be exactly zero at the centre point. 

2. Gas bubble concentric with spherical container 
2.1. Velocity jields 

To determine the flow velocity fields both inside and outside a gas bubble contained 
in a spherical liquid bath, it  is assumed that the fluids under consideration are 
Newtonian, obey the continuum fluid mechanics, and have constant thermodynamic 
and transport properties except for the interfacial tension. Since the fluid flows are 
azimuthally symmetric (there is no reason to believe otherwise), in terms of the 
Stokes’ stream function @, the low-Reynolds-number approximation of the fluid 
equations in the spherical coordinate system is (see e.g. Bird, Stewart & Lightfoot 
1960 and Happel & Brenner 1973) 

E2(E2@) = 0, (1) 
where 

r = FIRB, + = $/(RB Kef), Kef is the reference velocity, and R, is the radius of the 
fluid sphere. The tilde denotes that the variables are expressed in real units. 

The dimensionless stream function @ is defined as 

where v,. = r-component of the flow, wug = &component of the flow, w, = C,/ Kef, and 
we = Cee/Ker. Note that with the stream function defined by (2), the continuity 
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\ Sphcrical 
container 

FIGURE 1. Spherical coordinate system used for describing the velocity and temperature fields inside 
a spherical container. The origin of the coordinate system is at the centre of the gas bubble, which 
moves upward at a constant velocity 0. 

equation for a fluid with constant mass density, i.e. V - u  = 0, is automatically 
satisfied. A spherical coordinate system with its origin at the centre of the gas bubble 
is shown in figure 1. The bubble (and hence the coordinate system) is assumed to be 
moving upward at a constant velocity U .  The solutions being sought for the velocity 
fields inside and outside the bubble are of the steady-state type and are valid only 
at  the moment when the bubble is concentric with the outer shell. In  general, these 
kinds of solutions are quasi-static. However, when the bubble is held stationary at 
the centre of the shell by a vertical temperature gradient, the solutions become truly 
steady state. 

According to Happel k Brenner (1973), the stream functions for the liquid and gas 
regions which satisfy (1) are, respectively, 

03 

$[(r,  0 )  = E ( A ,  rn + B, r-,+I + C ,  rn+2 + D, r-n+s) f,(cos 0) ,  

$Jr, 0) = Z (En r" + Fn r-"+l+ G, rA+2 + H ,  r-n+s) f,(cos 0) ,  

( 3 4  

(3b) 

The eight constants in (3) are determined by the appropriate boundary conditions 

n-2 

Q) 

n-2 

where 9,(cos 0 )  is the nth-order Gegenbauer polynomial. 

specified as follows. The non-slip condition at the liquid-solid interface is 

v,., = - U cos 0,  at r = b-l, ( 4a )  

We, = U sin 8, at r = b-l ,  (4b) 
where U = o/V,,,, b = R,/R,, and R, is the inner radius of the spherical container. 

On the surface of the bubble, i.e. at r = 1, the r-component of the fluid flows will 
vanish because the gas inside the bubble is non-condensable. Specifically, 

vr, [ = v,., = 0. (5) 
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Ve,  c = V e ,  g. 

Also, the shear stresses created by the fluid flows and the gas-liquid interfacial-tension 
gradient should be balanced, i.e. 

(6) 

are the rates of strain in &direction, u = ,uc/pg, ,u = viscosity of the fluids, and 
ygc = gas-liquid interfacial tension. The remaining two boundary conditions are the 
boundedness requirements of the stream function inside the gas bubble. 

The eight constants in ( 3 )  are determined upon application of the above boundary 
conditions (4)-(7) and the boundedness of $. They are 

A, = L, b2,+'[(2n- 1 ) -  (2n+ 1 )  b2+2b2,+l] 
+6 , , ,K ,  U [ 1 + ~ + p ~ - : ( 3 - 2 ~ ) b ' ] ,  

B, = L,[2-(2n-1)b2n-3+ (2n-3)b2,-'] 

C ,  = - L, b2,-l[(2n- 3 )  - (2n- 1 )  b2 + 2bzn-l] 

D,  = - L,[2 - (2n + 1) bzn-' + (2n- 1 )  btn+l] 

+ is2, , K ,  U[ 1 - ( 1  - U )  b3], 

-P2, ,Kn U[(3+2u)b3-3b5], 

-v2, K ,  U[3 + 2~ - 3( 1 - U )  b5],  

En = Ln[2-i(2n- 1)2b2,-3+(2n+ 1 )  (2n-3)b2n-l-$h- 1)2b2n+l 
+ 2b4n-2] -v2, , K ,  U V [ ~  - 5b3 + 3b6], 

F, = 0, 

G ,  = - E  n, 
H ,  = 0, 

1 for n = 2, 
0 for n > 2,  

1 

where d2,, = 

L, = 4(2n- 1 )  In Kn 9 

(2n- 1 )  (2n- 1 + 2 4  b2n-3 +!j(2n+ 1 )  (2n- 3 )  b2"-l -= 1+u-- 1 
Kn 4 

2n- 1 
4 -- (2n- 1 - 2u)  b2,+l + ( 1  - U )  b4"-', 

n(n- 1 )  (2n- 1 )  
2 ~ g  Ker 

I ,  = - 

Following Haberman & Sayre (1950), the drag force on the bubble is given by 

4 = - 4 ~ /  Kef RBDnln-2. (9) 
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Note that only the &-mode of the velocity field outside the bubble is responsible for 
the drag force. The steady-state migration velocity of the bubble is determined by 
the overall force balance on the bubble, namely the balance among the drag, weight, 
and buoyancy forces. In  dimensionless form, the migration velocity is 

where g is the gravitational acceleration, and p is the mass density. 
The function I ,  in (10) represents the effect of the interfacial-tension gradient on 

the velocity of the bubble. In  the present case, the interfacial-tension gradient is 
created by a non-uniform temperature field so that I ,  can be evaluated once the 
temperature field is known. 

2.2. Temperature fields 

Assuming that the Prandtl numbers of the fluids are not too high, such that the PBclet 
number (i.e. the product of Reynolds and Prandtl numbers of the system) is less than 
unity, one can reduce the heat equation for the fluids to (see e.g. Bird et al. 1960) 

V2T = 0, 
where 

for azimuthally symmetric fields and T = (p-q)/Tref, where qef is a reference 
temperature, which is usually chosen as the maximum temperature difference in the 
system. 

This is exactly the Laplacian equation. The heat conduction in the solid wall of the 
spherical container can also be described by the same equation as long as the 
properties of the material are constant. The general solutions to (11) in the regions 
of the wall, liquid and gas are, respectively, 

m 

n-1 
Tw(r, 8 )  = X [A, rn-l +8, r-,] P,_,(COS e),  

where P,-l(cos 0 )  is the (n- 1)th-order Legendre polynomial. 
Upon imposing the boundary conditions on the gas-liquid and liquid-solid 

interfaces from the continuities of the temperature fields and the heat fluxes and the 
boundedness requirement of q, one finds the six constants in (12) as 

A, = !Fn N ,  dn-'[N, -d2"-l]-l,  

8, = - A n / N n ,  

( N  -b2n-1 B n ,  
n - l + m l  

n- 1 +ml- (n- 1) (1 - e l )  b2,-' 
0, = - 
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e n  9 

(n- 1)  (1 -61) dn =- 

(2n - 1) El 
En = n-1+?ZE1 e n  3 

n-l+ml 

Pn = 0, 
where 

(n- 1 + ml) (n- 1 +m2) + n(n- 1)  (1 -€l) (1 --Be) b2n-1 

(n- 1 )  (1 -81) [n+ (n- 1) B2]  + (n- 1)  (1 - E 2 )  [n- 1 + ml] b-en+l' 
Nn = 

el = kl/kg,  e2 = kw/kl,  k = thermal conductivity, d = R,/R,, and 

where T,,t(@ is the external temperature field on the outer surface of the spherical 
container, and R, the outer radius of the spherical container. 

By substituting (13e, f) into (12c) and setting r = 1, one obtains the temperature 
on the bubble surface ag 

03 (2n- 1 )  El N n -b2n-1 q r  = i ,e) = c 
n-l n - 1 + w1 - (n- 1) (1  -el) btn-l N n -dan-l 

xdn-1!fnPn-l(cos8). (14) 

2.3. Discussion 
Let the temperature field on the outer surface of the spherical container be specified 
as 

(15) 

then, the steady-state migration velocity of the bubble Uat the centre of the spherical 
container can be estimated from (10) and (14) in terms of qXt(8). By iteration, one 
is able to determine the particular value of Text(8) with which U is zero. This is the 
condition for a stationary bubble. Explicitly, it is 

W 

Text(e) = T, + R, c t, P,(COS el. 
n-1 

For a small temperature difference, the gas-hquid interfacial tensions of most 
liquids are very close to being a linear function of the temperature. Therefore, Ie can 
be evaluated analytically, and the temperature gradient needed to hold a bubble 
stationary is 

( t )  =--- 2 N2-d' [1 + 2f3- (1 -el) b3] RB(pt--p,) g 
3 N2-b3 ~ ~ a K ~ ( 2 - 5 b ~ + 3 b ' )  y1 1 8  7 

which is a constant. In (17), y1 = laygl/afl and the subscript s denotes the value of 
t ,  for a stationary bubble. When a bubble is immersed in an unbounded fluid, i.e. 
d = b+O, (17) becomes 

Note that only a linear temperature gradient or the &-mode of the externally applied 
temperature field will maintain a stationary gas bubble. 

In  the derivation of the velocity fields, the pressure on the surface of the bubble 
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was not considered as the necessary boundary condition. However, it is not difficult 
to show that, as long as the gradient of the gas-liquid interfacial tension remains in 
the PI-mode, the pressure on the surface of the bubble is automatically balanced. The 
details of this pressure balance calculation are presented in the Appendix. 

Equation (10) is quite general in the sense that results for many specific cases can 
be derived from it. 

(i) When I, = 0, i.e. there is no interfacial tension gradient, 

This same expmion  was previously derived by Haberman & Sayre (1950). 
(ii) When b+O, i.e. for an unbounded liquid medium, 

This expression was first derived by Young et al. (1959). (Note that there were some 
typographical errors in their original paper.) 

(iii) When I, = 0 and b+O, i.e. for an unbounded, isothermal liquid medium, 

This is exactly the Hadamard-Rybczynski (191 1) formula. 

liquid container, 
(iv) When I, = 0 and o+O, i.e. for a solid sphere inside a concentric spherical 

This agrees with the expression previously obtained by Cunningham (1910), Williams 
(1915) and Lee (1947). 

(v) When I, = 0, b+O and a+O, i.e. for a solid sphere in an unbounded fluid 

(23) 
medium, 

2 
b+-RB@,-Pg)9. 

9Pc 
This is Stokes' (1850) law. 

3. Numerical examples 
To illustrate the utility of the results derived in the previous section, let us consider 

a spherical glass shell of 2 mm outer radius and 0.01 mm wall thickness, filled with 
silicone oil DC 200 (2OCS) at a temperature of 20 "C. Assume that a small air bubble 
is introduced into the oil at the bottom of the shell using a hypodermic needle. Since 
the oil is quite viscous, the bubble will have attained its terminal velocity (steady 
state) by the time it reaches the centre of the shell, provided that the bubble were 
small enough. The steady-state migration velocity of the air bubble at the centre of 
the glass shell can now be calculated from (10) by setting I ,  = 0 since there is no 
surface-tension gradient owing to the uniform temperature. The bubble velocity 
versus the bubble radius is plotted in figure 2. For comparison, the migration velocity 
of a bubble of the same size immersed in an unbounded liquid is also plotted. It can 
be seen from figure 2 that the difference in the velocities of the bubble in these two 
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FIQURE 2. Velocity of an air bubble at the centre of an isothermal spherical glass shell. The outer 
radius and the wall thickness are, respectively, 2 mm and 0.01 mm. The shell is filled with silicone 
oil, DC200 (20CS) and is at a temperature of 20 "C. The broken line is the velocity of the bubble 
in an unbounded oil bath. 
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FIGURE 3. Temperature gradient on the outer surface of a spherical glass shell required to have 
& stationary air bubble concentric with the shell. The shell is filled with silicone oil, DC200 (2OCS) 
and is at an average temperature of 20 "C. The outer radius and wall thickness of the shell are, 
respectively, 2 mm and 0.01 mm. The PBclet number is larger than unity between points A and B. 
The broken line is for a bubble in an unbounded oil bath. 

different environments becomes significant when the aspect ratio, i.e. the ratio of the 
bubble radius to the container inner shell radius, R,/R,, is larger than 0.1. 

The temperature gradient imposed on the outer surface of the glass shell that will 
maintain a stationary bubble a t  the centre of the glass shell is calculated from (17) 
and is plotted in figure 3. Note that the Reynolds numbers of the flows in the air 
and the oil are far below unity for all the bubble sizes considered. Therefore, the 
low-Reynolds-number approximation employed for the current work is justified. 
However, owing to the high Prandtl number of the oil, the Pbclet numbers in the 
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oil will be larger than unity when R,/R, is between about 0.1 and 0.95, i.e. between 
points A and B marked in figure 3. In  this range, the low-Pbclet-number approxi- 
mation of the heat equation will fail and a larger error will occur in the calculation 

When an air bubble is immersed in an unbounded oil bath, the temperature 
gradient in the oil that will keep the bubble stationary can be calculated from (18). 
In  this case, the temperature gradient is a linear function of the bubble size, and is 
plotted in figure 3 for comparison. Because of the finite size of the glass shell, the 
temperature gradient ( t l ) ,  is no longer a linear function of the bubble size when the 
bubble radius is larger than 0.04 mm. This effect of the finite size of the container 
on the temperature gradient that is required to maintain a stationary bubble is 
believed to be one of the reasons why the experimental data previously reported by 
Young et al. (1959) for larger-size bubbles are in poor agreement with the theoretical 
predictions. 

of @ I ) , .  

4. Conclusions 
The steady-state migration velocity of a gas bubble located at the centre of a 

spherical liquid bath has been calculated by considering the combined effect of 
gravity, interfacial tension gradient, and the finite size of the liquid container. A 
vertical temperature gradient will create an interfacial-tension gradient on the 
surface of the bubble and, hence, affect its vertical migration velocity. An analytical 
expression for the temperature gradient that will sustain a stationary bubble at the 
centre of the spherical container has been derived. The present result has also been 
compared with some of the earlier findings by others, giving more insight into the 
effect of the container wall on the bubble movement. 

Finally, a comment is in order regarding the possibility of carrying out an analysis 
of the motion of the fluids, similar to the one presented in this work, when the 
gas-liquid interface is not concentric with the spherical container. Although the 
algebra required is certain to be much more involved and extremely tedious, such 
analysis is possible, and in fact quite straightforward, using the bipolar coordinates 
introduced earlier by Jeffery (1912). Calculations dealing with the non-concentric 
situation are currently in progress and will be reported in a future publication. 

This work was supported, in part, by the U.S. Department of Energy through the 
Lawrence Livermore National Laboratory Subcontract No. 41 80405. 

Appendix 
The pressure balance on the surface of a bubble located at the centre of a spherical 

container is calculated. The general expressions for the hydrodynamic pressures 
inside and outside the bubble are, respectively, 
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The general expressions for the corresponding normal stresses are, respectively, 
m 

"o 

frr,/ = Constant+2pcFef Ril  I: [(n-2) A,rn-3-(n+ 1)Bnr-n-2 
n-2 

+nC,rn-1-(n-1)Dnr-n]Pn~l(cos8) .  (A 4) 

The pressure difference across the surface of the bubble is 

ASgc = &+7;r, f-@g-?rr, g ] i - R B -  (pr-pg)gRB cosO+Constant. (A 5 )  

Substituting (A l), (A 2), (A 3) and (A 4) into (A 5), one has 

x [uKnMn-6n] Pn-,(cos8)+Constant, (A 6) 
where 

Mn = 6+n(4nz-1) (n-2)bzn-3-(2n+1)(2n-3) (2n2-22n-1)b2n-1 

+(2n-1) (2n-3) (n2-1)bZn+l. 

The pressure-balance equation on the gas-liquid interface is the well-known Laplace- 
Young equation. For a spherical interface of radius R,, it  becomes 

2 
- -Ygc(@ = A@,/. (A 7) 

RB 

The interfacial tension can be expanded into Legendre polynomials, namely 
m 

where Xn-l is the expansion coefficient for the term containing Pn-'. 
Substituting (A 6) and (A 8) into (A 7), one has 

From (A 9), it is clear that, for n = 2, namely when the interfacial tension is in the 
&-mode, the variation of the capillary pressure is completely counterbalanced by the 
pressure variation created by the fluid flows inside and outside the bubble. For n > 2, 
however, the capillary pressure variation cannot be counterbalanced since the 
following equality will never be satisfied : 

uKn M,, - 6n 
4(2n- 1) 

=-1, f o r n = 3 , 4 , 5  ,.... 
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